home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Singles Flirt Up Your Life! (German)
/
Singles Flirt Up Your Life.iso
/
data1.cab
/
MeshLow
/
doorOutsideBladeDesign.ams
< prev
next >
Wrap
Text File
|
2004-01-29
|
28KB
|
1,497 lines
Wonderlib::MVFMesh object
{
boneName
{
}
boneWeight
{
}
material
{
Wonderlib::Material 0
{
ambient = 0 0 0 1
bumpmap =
diffuse = 0.8 0.8 0.8 1
dstBlend = 5
name = phong3
power = 80
specular = 0.2906 0.2906 0.2906 0.5
srcBlend = 4
texture = DoorDesign
type = 257
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
Wonderlib::Material 1
{
ambient = 0 0 0 1
bumpmap =
diffuse = 1 0.753797 0.311 1
dstBlend = 5
name = phong4
power = 11.36
specular = 1 0.871573 0.699 0.4
srcBlend = 4
texture =
type = 8448
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
}
normalVertex
{
0 = -9.40621e-008 1 0
1 = 3.62788e-013 -3.61018e-006 -1
2 = 1 -3.52616e-006 0
3 = -9.40621e-008 1 0
4 = 3.39581e-013 -3.61018e-006 -1
5 = -1 0 0
6 = 4.27137e-013 -4.23139e-006 1
7 = -9.40621e-008 1 0
8 = 1 -3.52616e-006 0
9 = 4.27137e-013 -4.23139e-006 1
10 = -9.40621e-008 1 0
11 = -1 0 0
12 = 1.00945e-007 -1 0
13 = 4.27137e-013 -4.23139e-006 1
14 = 1 -3.52616e-006 0
15 = 1.00945e-007 -1 0
16 = 4.27137e-013 -4.23139e-006 1
17 = -1 0 0
18 = 1.00945e-007 -1 0
19 = 3.64429e-013 -3.61018e-006 -1
20 = 1 -3.52616e-006 0
21 = 1.00945e-007 -1 0
22 = 3.41222e-013 -3.61018e-006 -1
23 = -1 0 0
24 = 0.38635 0.864228 -0.322248
25 = 0.381401 0.85866 0.342397
26 = 0.484485 0.737018 -0.471252
27 = -0.481875 0.754245 -0.445994
28 = -0.460976 0.792891 0.398528
29 = 0.482588 0.783011 0.392431
30 = -0.412252 0.836703 -0.360522
31 = -0.511366 0.595874 -0.619224
32 = -0.511365 0.595874 0.619225
33 = -0.412254 0.836703 0.360521
34 = 0.403564 0.842461 0.356925
35 = 0.403564 0.842461 -0.356926
36 = -0.41152 0.852188 -0.32315
37 = -0.406391 0.846884 0.342977
38 = 0.00171854 -0.185839 -0.982579
39 = 0.00177909 -0.192739 0.981248
40 = 0.840415 -0.207306 0.500727
41 = 0.852477 -0.210553 -0.478488
42 = -0.446904 -0.746257 0.493333
43 = -0.450623 -0.757381 -0.472559
44 = -0.847252 -0.228711 -0.479432
45 = -0.835021 -0.225054 0.502087
46 = 0.500094 0.619211 -0.605379
47 = 0.500094 0.619211 0.605379
48 = 0.450779 -0.732736 0.509801
49 = 0.454804 -0.744258 -0.489115
50 = -0.00171749 0.185839 -0.982579
51 = -0.00178023 0.19274 0.981248
52 = -0.482019 -0.740469 -0.468362
53 = -0.630153 -0.429821 -0.646654
54 = 0.61774 -0.46979 -0.63063
55 = 0.47911 -0.757966 -0.442653
56 = 0.457699 -0.797043 0.393998
57 = 0.556545 -0.581303 0.593586
58 = -0.479883 -0.786949 0.387845
59 = -0.552798 -0.564735 0.612771
60 = 0.511367 -0.595874 -0.619224
61 = 0.412253 -0.836702 -0.360523
62 = -0.403562 -0.842463 0.356922
63 = -0.386349 -0.864228 -0.322248
64 = 0.41152 -0.852189 -0.323149
65 = 0.406392 -0.846884 0.342977
66 = -0.381401 -0.85866 0.342398
67 = -0.852477 0.210552 -0.478489
68 = 0.847252 0.22871 -0.479432
69 = 0.835021 0.225053 0.502087
70 = -0.840415 0.207306 0.500727
71 = 0.450623 0.757381 -0.472559
72 = 0.446905 0.746256 0.493333
73 = -0.454804 0.744258 -0.489115
74 = -0.500091 -0.619213 0.60538
75 = -0.450779 0.732735 0.509801
76 = 0.511366 -0.595873 0.619225
77 = 0.412254 -0.836702 0.360523
78 = -0.500091 -0.619213 -0.605379
79 = -0.403562 -0.842463 -0.356921
80 = -0.621369 0.460354 -0.634014
81 = 0.63317 0.420986 -0.649513
82 = 0.55778 0.554553 0.617538
83 = -0.561712 0.571068 0.598633
}
positionVertex
{
0 = 0.726154 -0.0115469 0.995562
1 = 0.802865 -0.0112911 0.995562
2 = 0.802231 -0.011284 0.724006
3 = 0.727346 -0.0115337 0.724006
4 = 0.743505 -0.110545 0.877774
5 = 0.757621 -0.12073 0.885855
6 = 0.786168 -0.110389 0.913704
7 = 0.772342 -0.120685 0.905623
8 = 0.759157 -0.130042 0.905623
9 = 0.757621 -0.12073 0.905623
10 = 0.759157 -0.130042 0.885855
11 = 0.771519 -0.129981 0.905623
12 = 0.771519 -0.129981 0.885855
13 = 0.729838 -0.140725 0.915591
14 = 0.799904 -0.140357 0.915591
15 = 0.799904 -0.140357 0.875155
16 = 0.729837 -0.140725 0.875155
17 = 0.748913 -0.165144 0.906622
18 = 0.782544 -0.164974 0.906622
19 = 0.782539 -0.164973 0.884121
20 = 0.748919 -0.165145 0.884122
21 = 0.743505 -0.110545 0.913704
22 = 0.786168 -0.110389 0.877774
23 = 0.772342 -0.120685 0.885855
24 = 0.726153 -0.0931431 0.995563
25 = 0.732249 -0.110535 0.984998
26 = 0.802865 -0.0928922 0.995563
27 = 0.795629 -0.110396 0.985189
28 = 0.795629 -0.110396 0.731354
29 = 0.801673 -0.092888 0.724006
30 = 0.726787 -0.0931329 0.724006
31 = 0.732249 -0.110535 0.73025
32 = 0.765108 -0.140539 0.931947
33 = 0.765108 -0.14054 0.855735
34 = 0.769861 0.0260726 0.885855
35 = 0.769861 0.0260726 0.905623
36 = 0.771397 0.0167604 0.905623
37 = 0.771397 0.0167604 0.885855
38 = 0.729114 0.0363879 0.915591
39 = 0.729114 0.0363879 0.875155
40 = 0.757498 0.026011 0.885855
41 = 0.757498 0.026011 0.905623
42 = 0.799181 0.0367553 0.875155
43 = 0.79918 0.0367558 0.915591
44 = 0.76391 0.0365699 0.931947
45 = 0.76391 0.03657 0.855735
46 = 0.746474 0.061004 0.906622
47 = 0.746479 0.061003 0.884121
48 = 0.785512 0.006575 0.877774
49 = 0.785512 0.00657504 0.913704
50 = 0.74285 0.00641948 0.913704
51 = 0.756676 0.016715 0.905623
52 = 0.756676 0.016715 0.885855
53 = 0.74285 0.00641944 0.877774
54 = 0.796768 0.00656556 0.984998
55 = 0.733389 0.00642613 0.985189
56 = 0.733389 0.00642615 0.731354
57 = 0.796768 0.0065656 0.73025
58 = 0.780105 0.0611748 0.906622
59 = 0.780099 0.0611757 0.884122
60 = 3.05176e-007 -0.094774 -0.0010204
61 = 0.811894 -0.0947739 -0.0010204
62 = 3.05176e-007 -0.094774 1.99916
63 = 0.811894 -0.0947739 1.99916
64 = 3.05176e-007 -0.0102562 1.99916
65 = 0.811894 -0.0102561 1.99916
66 = 3.05176e-007 -0.0102562 -0.0010207
67 = 0.811894 -0.0102561 -0.0010207
}
textureTriangle
{
0
{
0 = 33 32 30
1 = 32 31 30
2 = 28 27 29
3 = 29 27 26
4 = 24 32 25
5 = 25 32 33
6 = 24 23 32
7 = 23 26 32
8 = 25 33 22
9 = 28 22 27
10 = 33 27 22
11 = 21 20 2
12 = 20 3 2
13 = 19 18 16
14 = 18 17 16
15 = 15 14 12
16 = 14 13 12
17 = 11 10 8
18 = 10 9 8
19 = 4 7 5
20 = 7 6 5
21 = 16 17 15
22 = 17 14 15
23 = 19 12 18
24 = 12 13 18
25 = 34 35 3
26 = 35 2 3
27 = 31 32 1
28 = 32 26 1
29 = 0 1 27
30 = 27 1 26
31 = 34 36 37
32 = 35 38 39
33 = 7 8 6
34 = 8 9 6
35 = 4 5 11
36 = 11 5 10
37 = 9 10 6
38 = 10 5 6
39 = 30 0 33
40 = 33 0 27
41 = 38 35 37
42 = 35 34 37
43 = 29 26 23
44 = 3 20 36
45 = 34 3 36
46 = 2 39 21
47 = 2 35 39
48 = 40 41 43
49 = 41 42 43
50 = 45 46 44
51 = 44 46 47
52 = 49 41 48
53 = 48 41 40
54 = 49 50 41
55 = 50 47 41
56 = 48 40 51
57 = 45 51 46
58 = 40 46 51
59 = 52 53 55
60 = 53 54 55
61 = 56 57 59
62 = 57 58 59
63 = 60 61 63
64 = 61 62 63
65 = 64 65 67
66 = 65 66 67
67 = 71 68 70
68 = 68 69 70
69 = 59 58 60
70 = 58 61 60
71 = 56 63 57
72 = 63 62 57
73 = 72 73 54
74 = 73 55 54
75 = 42 41 74
76 = 41 47 74
77 = 75 74 46
78 = 46 74 47
79 = 72 76 77
80 = 73 78 79
81 = 68 67 69
82 = 67 66 69
83 = 71 70 64
84 = 64 70 65
85 = 66 65 69
86 = 65 70 69
87 = 43 75 40
88 = 40 75 46
89 = 78 73 77
90 = 73 72 77
91 = 44 47 50
92 = 54 53 76
93 = 72 54 76
94 = 55 79 52
95 = 55 73 79
96 = 80 81 83
97 = 81 82 83
98 = 84 85 87
99 = 85 86 87
100 = 88 89 91
101 = 89 90 91
102 = 92 93 95
103 = 93 94 95
104 = 96 97 99
105 = 97 98 99
106 = 100 101 103
107 = 101 102 103
}
1
{
0 = 0 1 3
1 = 1 2 3
2 = 5 6 4
3 = 4 6 7
4 = 9 1 8
5 = 8 1 0
6 = 9 10 1
7 = 10 7 1
8 = 8 0 11
9 = 5 11 6
10 = 0 6 11
11 = 5 4 13
12 = 4 12 13
13 = 14 3 15
14 = 3 2 15
15 = 16 17 19
16 = 17 18 19
17 = 22 23 25
18 = 23 24 25
19 = 29 26 28
20 = 26 27 28
21 = 15 2 16
22 = 2 17 16
23 = 14 19 3
24 = 19 18 3
25 = 20 21 12
26 = 21 13 12
27 = 2 1 17
28 = 1 7 17
29 = 18 17 6
30 = 6 17 7
31 = 20 10 9
32 = 21 8 11
33 = 26 25 27
34 = 25 24 27
35 = 29 28 22
36 = 22 28 23
37 = 24 23 27
38 = 23 28 27
39 = 3 18 0
40 = 0 18 6
41 = 8 21 9
42 = 21 20 9
43 = 4 7 10
44 = 12 4 10
45 = 20 12 10
46 = 13 11 5
47 = 13 21 11
48 = 30 31 33
49 = 31 32 33
50 = 35 36 34
51 = 34 36 37
52 = 39 31 38
53 = 38 31 30
54 = 39 40 31
55 = 40 37 31
56 = 38 30 41
57 = 35 41 36
58 = 30 36 41
59 = 35 34 43
60 = 34 42 43
61 = 44 33 45
62 = 33 32 45
63 = 46 47 49
64 = 47 48 49
65 = 50 51 53
66 = 51 52 53
67 = 57 54 56
68 = 54 55 56
69 = 45 32 46
70 = 32 47 46
71 = 44 49 33
72 = 49 48 33
73 = 58 59 42
74 = 59 43 42
75 = 32 31 47
76 = 31 37 47
77 = 48 47 36
78 = 36 47 37
79 = 58 40 39
80 = 59 38 41
81 = 54 53 55
82 = 53 52 55
83 = 57 56 50
84 = 50 56 51
85 = 52 51 55
86 = 51 56 55
87 = 33 48 30
88 = 30 48 36
89 = 38 59 39
90 = 59 58 39
91 = 34 37 40
92 = 42 34 40
93 = 58 42 40
94 = 43 41 35
95 = 43 59 41
96 = 60 61 63
97 = 61 62 63
98 = 64 65 67
99 = 65 66 67
100 = 67 66 69
101 = 66 68 69
102 = 69 68 71
103 = 68 70 71
104 = 70 68 65
105 = 68 66 65
106 = 69 71 67
107 = 71 64 67
}
}
textureVertex
{
0
{
0 = 0.644999 0.0442833
1 = 0.727298 0.0442833
2 = 0.586958 1.00129
3 = 0.586643 0.908374
4 = 0.989872 0.996996
5 = 0.957439 0.972826
6 = 0.783368 0.984132
7 = 0.772831 0.996996
8 = 0.772831 0.0128064
9 = 0.790324 0.043514
10 = 0.958054 0.0540177
11 = 0.989872 0.0128064
12 = 0.814985 0.45173
13 = 0.862714 0.412
14 = 0.862714 0.335143
15 = 0.814985 0.31436
16 = 0.948174 0.31436
17 = 0.888619 0.335143
18 = 0.888619 0.412
19 = 0.948174 0.45173
20 = 0.749682 0.832313
21 = 0.749682 1.07465
22 = 0.633093 0.343833
23 = 0.749167 0.343833
24 = 0.737338 0.343833
25 = 0.644275 0.343833
26 = 0.728738 0.149281
27 = 0.646439 0.149281
28 = 0.622042 0.343833
29 = 0.760759 0.343833
30 = 0.668249 0.0685164
31 = 0.704892 0.0692421
32 = 0.705911 0.149281
33 = 0.669268 0.149281
34 = 0.420724 0.907978
35 = 0.420387 1.00167
36 = 0.501693 0.734226
37 = 0.250325 0.83218
38 = 0.250319 1.07451
39 = 0.501693 1.19096
40 = 0.669268 0.149281
41 = 0.705911 0.149281
42 = 0.704892 0.0692421
43 = 0.668249 0.0685164
44 = 0.760759 0.343833
45 = 0.622042 0.343833
46 = 0.646439 0.149281
47 = 0.728738 0.149281
48 = 0.644275 0.343833
49 = 0.737338 0.343833
50 = 0.749167 0.343833
51 = 0.633093 0.343833
52 = 0.749682 1.07465
53 = 0.749682 0.832313
54 = 0.586643 0.908374
55 = 0.586958 1.00129
56 = 0.948174 0.45173
57 = 0.888619 0.412
58 = 0.888619 0.335143
59 = 0.948174 0.31436
60 = 0.814985 0.31436
61 = 0.862714 0.335143
62 = 0.862714 0.412
63 = 0.814985 0.45173
64 = 0.989872 0.0128064
65 = 0.958054 0.0540177
66 = 0.790324 0.043514
67 = 0.772831 0.0128064
68 = 0.772831 0.996996
69 = 0.783368 0.984132
70 = 0.957439 0.972826
71 = 0.989872 0.996996
72 = 0.420724 0.907978
73 = 0.420387 1.00167
74 = 0.727298 0.0442833
75 = 0.644999 0.0442833
76 = 0.501693 0.734226
77 = 0.250325 0.83218
78 = 0.250319 1.07451
79 = 0.501693 1.19096
80 = 0.956227 1.00537
81 = 0.0437741 1.00537
82 = 0.0437741 0.0137613
83 = 0.956227 0.0137613
84 = 0.57477 0.397383
85 = 0.57477 0.0421995
86 = 0.526421 0.0421995
87 = 0.526421 0.397383
88 = 0.956227 0.0137611
89 = 0.0437741 0.0137611
90 = 0.0437741 1.00537
91 = 0.956227 1.00537
92 = 0.574208 0.0466383
93 = 0.574208 0.408512
94 = 0.519199 0.408512
95 = 0.519199 0.0466383
96 = 0.042649 0.980603
97 = 0.0920368 0.980603
98 = 0.0920368 0.0411991
99 = 0.042649 0.0411993
100 = 0.0920369 0.983062
101 = 0.0426492 0.983062
102 = 0.0426492 0.0387405
103 = 0.0920369 0.0387403
}
1
{
0 = 0.93516 0.771429
1 = 0.935097 0.765236
2 = 0.929939 0.759434
3 = 0.929951 0.777262
4 = 0.938231 0.767212
5 = 0.938201 0.769495
6 = 0.939306 0.771422
7 = 0.93937 0.765215
8 = 0.936282 0.769477
9 = 0.936253 0.767244
10 = 0.937214 0.766628
11 = 0.937216 0.769985
12 = 0.937568 0.767942
13 = 0.937564 0.768733
14 = 0.911985 0.792123
15 = 0.911985 0.744696
16 = 0.962046 0.744534
17 = 0.944307 0.759415
18 = 0.944294 0.777187
19 = 0.962046 0.791961
20 = 0.936918 0.767945
21 = 0.936922 0.768732
22 = 0.919057 0.665524
23 = 0.925099 0.660531
24 = 0.948086 0.660596
25 = 0.954358 0.665524
26 = 0.954358 0.560783
27 = 0.948223 0.56472
28 = 0.925018 0.564364
29 = 0.919057 0.560783
30 = 0.935473 0.502775
31 = 0.93541 0.496581
32 = 0.930252 0.49078
33 = 0.930264 0.508607
34 = 0.938544 0.498558
35 = 0.938513 0.500841
36 = 0.939619 0.502768
37 = 0.939683 0.49656
38 = 0.936595 0.500823
39 = 0.936566 0.49859
40 = 0.937527 0.497974
41 = 0.937529 0.501331
42 = 0.937881 0.499288
43 = 0.937877 0.500079
44 = 0.912297 0.523468
45 = 0.912297 0.476042
46 = 0.962359 0.47588
47 = 0.944619 0.490761
48 = 0.944607 0.508532
49 = 0.962359 0.523306
50 = 0.920839 0.94953
51 = 0.926881 0.944537
52 = 0.949868 0.944602
53 = 0.956139 0.94953
54 = 0.956139 0.844789
55 = 0.950005 0.848726
56 = 0.9268 0.84837
57 = 0.920839 0.844789
58 = 0.937231 0.499291
59 = 0.937235 0.500077
60 = 0.0553398 0.947446
61 = 0.737699 0.947446
62 = 0.737699 0.527549
63 = 0.0553398 0.527549
64 = 0.737699 0.0563745
65 = 0.0553397 0.054847
66 = 0.101329 0.0812774
67 = 0.693575 0.0824653
68 = 0.101329 0.448654
69 = 0.693575 0.449842
70 = 0.0553397 0.474745
71 = 0.737699 0.476272
}
}
triangle
{
0
{
materialNr = 1
normalVertexNr = 73 75 78
positionVertexNr = 10 8 5
smoothingGroup = 98304
}
1
{
materialNr = 1
normalVertexNr = 75 74 78
positionVertexNr = 8 9 5
smoothingGroup = 83968
}
2
{
materialNr = 1
normalVertexNr = 68 71 69
positionVertexNr = 15 12 14
smoothingGroup = 20512
}
3
{
materialNr = 1
normalVertexNr = 69 71 72
positionVertexNr = 14 12 11
smoothingGroup = 10272
}
4
{
materialNr = 1
normalVertexNr = 70 75 67
positionVertexNr = 13 8 16
smoothingGroup = 12288
}
5
{
materialNr = 1
normalVertexNr = 67 75 73
positionVertexNr = 16 8 10
smoothingGroup = 41472
}
6
{
materialNr = 1
normalVertexNr = 70 51 75
positionVertexNr = 13 32 8
smoothingGroup = 4256
}
7
{
materialNr = 1
normalVertexNr = 51 72 75
positionVertexNr = 32 11 8
smoothingGroup = 1152
}
8
{
materialNr = 1
normalVertexNr = 67 73 50
positionVertexNr = 16 10 33
smoothingGroup = 2576
}
9
{
materialNr = 1
normalVertexNr = 68 50 71
positionVertexNr = 15 33 12
smoothingGroup = 5248
}
10
{
materialNr = 1
normalVertexNr = 73 71 50
positionVertexNr = 10 12 33
smoothingGroup = 400
}
11
{
materialNr = 1
normalVertexNr = 68 69 64
positionVertexNr = 15 14 19
smoothingGroup = 16464
}
12
{
materialNr = 1
normalVertexNr = 69 65 64
positionVertexNr = 14 18 19
smoothingGroup = 532
}
13
{
materialNr = 1
normalVertexNr = 79 78 62
positionVertexNr = 4 5 21
smoothingGroup = 68
}
14
{
materialNr = 1
normalVertexNr = 78 74 62
positionVertexNr = 5 9 21
smoothingGroup = 2114
}
15
{
materialNr = 1
normalVertexNr = 77 76 61
positionVertexNr = 6 7 22
smoothingGroup = 768
}
16
{
materialNr = 1
normalVertexNr = 76 60 61
positionVertexNr = 7 23 22
smoothingGroup = 704
}
17
{
materialNr = 1
normalVertexNr = 59 58 57
positionVertexNr = 24 25 26
smoothingGroup = 576
}
18
{
materialNr = 1
normalVertexNr = 58 56 57
positionVertexNr = 25 27 26
smoothingGroup = 448
}
19
{
materialNr = 1
normalVertexNr = 53 54 52
positionVertexNr = 30 29 31
smoothingGroup = 72
}
20
{
materialNr = 1
normalVertexNr = 54 55 52
positionVertexNr = 29 28 31
smoothingGroup = 112
}
21
{
materialNr = 1
normalVertexNr = 62 74 77
positionVertexNr = 21 9 6
smoothingGroup = 34
}
22
{
materialNr = 1
normalVertexNr = 74 76 77
positionVertexNr = 9 7 6
smoothingGroup = 304
}
23
{
materialNr = 1
normalVertexNr = 79 61 78
positionVertexNr = 4 22 5
smoothingGroup = 20
}
24
{
materialNr = 1
normalVertexNr = 61 60 78
positionVertexNr = 22 23 5
smoothingGroup = 152
}
25
{
materialNr = 1
normalVertexNr = 66 63 65
positionVertexNr = 17 20 18
smoothingGroup = 448
}
26
{
materialNr = 1
normalVertexNr = 63 64 65
positionVertexNr = 20 19 18
smoothingGroup = 672
}
27
{
materialNr = 1
normalVertexNr = 74 75 76
positionVertexNr = 9 8 7
smoothingGroup = 16401
}
28
{
materialNr = 1
normalVertexNr = 75 72 76
positionVertexNr = 8 11 7
smoothingGroup = 1033
}
29
{
materialNr = 1
normalVertexNr = 60 76 71
positionVertexNr = 23 7 12
smoothingGroup = 70
}
30
{
materialNr = 1
normalVertexNr = 71 76 72
positionVertexNr = 12 7 11
smoothingGroup = 2060
}
31
{
materialNr = 1
normalVertexNr = 66 51 70
positionVertexNr = 17 32 13
smoothingGroup = 56
}
32
{
materialNr = 1
normalVertexNr = 63 67 50
positionVertexNr = 20 16 33
smoothingGroup = 2060
}
33
{
materialNr = 1
normalVertexNr = 54 57 55
positionVertexNr = 29 26 28
smoothingGroup = 20
}
34
{
materialNr = 1
normalVertexNr = 57 56 55
positionVertexNr = 26 27 28
smoothingGroup = 268
}
35
{
materialNr = 1
normalVertexNr = 53 52 59
positionVertexNr = 30 31 24
smoothingGroup = 12
}
36
{
materialNr = 1
normalVertexNr = 59 52 58
positionVertexNr = 24 31 25
smoothingGroup = 518
}
37
{
materialNr = 1
normalVertexNr = 56 58 55
positionVertexNr = 27 25 28
smoothingGroup = 137
}
38
{
materialNr = 1
normalVertexNr = 58 52 55
positionVertexNr = 25 31 28
smoothingGroup = 35
}
39
{
materialNr = 1
normalVertexNr = 78 60 73
positionVertexNr = 5 23 10
smoothingGroup = 9
}
40
{
materialNr = 1
normalVertexNr = 73 60 71
positionVertexNr = 10 23 12
smoothingGroup = 259
}
41
{
materialNr = 1
normalVertexNr = 67 63 70
positionVertexNr = 16 20 13
smoothingGroup = 6
}
42
{
materialNr = 1
normalVertexNr = 63 66 70
positionVertexNr = 20 17 13
smoothingGroup = 82
}
43
{
materialNr = 1
normalVertexNr = 69 72 51
positionVertexNr = 14 11 32
smoothingGroup = 8194
}
44
{
materialNr = 1
normalVertexNr = 65 69 51
positionVertexNr = 18 14 32
smoothingGroup = 7
}
45
{
materialNr = 1
normalVertexNr = 66 65 51
positionVertexNr = 17 18 32
smoothingGroup = 265
}
46
{
materialNr = 1
normalVertexNr = 64 50 68
positionVertexNr = 19 33 15
smoothingGroup = 1089
}
47
{
materialNr = 1
normalVertexNr = 64 63 50
positionVertexNr = 19 20 33
smoothingGroup = 41
}
48
{
materialNr = 1
normalVertexNr = 49 48 46
positionVertexNr = 34 35 37
smoothingGroup = 98304
}
49
{
materialNr = 1
normalVertexNr = 48 47 46
positionVertexNr = 35 36 37
smoothingGroup = 83968
}
50
{
materialNr = 1
normalVertexNr = 44 43 45
positionVertexNr = 39 40 38
smoothingGroup = 20512
}
51
{
materialNr = 1
normalVertexNr = 45 43 42
positionVertexNr = 38 40 41
smoothingGroup = 10272
}
52
{
materialNr = 1
normalVertexNr = 40 48 41
positionVertexNr = 43 35 42
smoothingGroup = 12288
}
53
{
materialNr = 1
normalVertexNr = 41 48 49
positionVertexNr = 42 35 34
smoothingGroup = 41472
}
54
{
materialNr = 1
normalVertexNr = 40 39 48
positionVertexNr = 43 44 35
smoothingGroup = 4256
}
55
{
materialNr = 1
normalVertexNr = 39 42 48
positionVertexNr = 44 41 35
smoothingGroup = 1152
}
56
{
materialNr = 1
normalVertexNr = 41 49 38
positionVertexNr = 42 34 45
smoothingGroup = 2576
}
57
{
materialNr = 1
normalVertexNr = 44 38 43
positionVertexNr = 39 45 40
smoothingGroup = 5248
}
58
{
materialNr = 1
normalVertexNr = 49 43 38
positionVertexNr = 34 40 45
smoothingGroup = 400
}
59
{
materialNr = 1
normalVertexNr = 44 45 36
positionVertexNr = 39 38 47
smoothingGroup = 16464
}
60
{
materialNr = 1
normalVertexNr = 45 37 36
positionVertexNr = 38 46 47
smoothingGroup = 532
}
61
{
materialNr = 1
normalVertexNr = 35 46 34
positionVertexNr = 48 37 49
smoothingGroup = 68
}
62
{
materialNr = 1
normalVertexNr = 46 47 34
positionVertexNr = 37 36 49
smoothingGroup = 2114
}
63
{
materialNr = 1
normalVertexNr = 33 32 30
positionVertexNr = 50 51 53
smoothingGroup = 768
}
64
{
materialNr = 1
normalVertexNr = 32 31 30
positionVertexNr = 51 52 53
smoothingGroup = 704
}
65
{
materialNr = 1
normalVertexNr = 82 29 83
positionVertexNr = 1 54 0
smoothingGroup = 576
}
66
{
materialNr = 1
normalVertexNr = 29 28 83
positionVertexNr = 54 55 0
smoothingGroup = 448
}
67
{
materialNr = 1
normalVertexNr = 81 80 26
positionVertexNr = 2 3 57
smoothingGroup = 72
}
68
{
materialNr = 1
normalVertexNr = 80 27 26
positionVertexNr = 3 56 57
smoothingGroup = 112
}
69
{
materialNr = 1
normalVertexNr = 34 47 33
positionVertexNr = 49 36 50
smoothingGroup = 34
}
70
{
materialNr = 1
normalVertexNr = 47 32 33
positionVertexNr = 36 51 50
smoothingGroup = 304
}
71
{
materialNr = 1
normalVertexNr = 35 30 46
positionVertexNr = 48 53 37
smoothingGroup = 20
}
72
{
materialNr = 1
normalVertexNr = 30 31 46
positionVertexNr = 53 52 37
smoothingGroup = 152
}
73
{
materialNr = 1
normalVertexNr = 25 24 37
positionVertexNr = 58 59 46
smoothingGroup = 448
}
74
{
materialNr = 1
normalVertexNr = 24 36 37
positionVertexNr = 59 47 46
smoothingGroup = 672
}
75
{
materialNr = 1
normalVertexNr = 47 48 32
positionVertexNr = 36 35 51
smoothingGroup = 16401
}
76
{
materialNr = 1
normalVertexNr = 48 42 32
positionVertexNr = 35 41 51
smoothingGroup = 1033
}
77
{
materialNr = 1
normalVertexNr = 31 32 43
positionVertexNr = 52 51 40
smoothingGroup = 70
}
78
{
materialNr = 1
normalVertexNr = 43 32 42
positionVertexNr = 40 51 41
smoothingGroup = 2060
}
79
{
materialNr = 1
normalVertexNr = 25 39 40
positionVertexNr = 58 44 43
smoothingGroup = 56
}
80
{
materialNr = 1
normalVertexNr = 24 41 38
positionVertexNr = 59 42 45
smoothingGroup = 2060
}
81
{
materialNr = 1
normalVertexNr = 80 83 27
positionVertexNr = 3 0 56
smoothingGroup = 20
}
82
{
materialNr = 1
normalVertexNr = 83 28 27
positionVertexNr = 0 55 56
smoothingGroup = 268
}
83
{
materialNr = 1
normalVertexNr = 81 26 82
positionVertexNr = 2 57 1
smoothingGroup = 12
}
84
{
materialNr = 1
normalVertexNr = 82 26 29
positionVertexNr = 1 57 54
smoothingGroup = 518
}
85
{
materialNr = 1
normalVertexNr = 28 29 27
positionVertexNr = 55 54 56
smoothingGroup = 137
}
86
{
materialNr = 1
normalVertexNr = 29 26 27
positionVertexNr = 54 57 56
smoothingGroup = 35
}
87
{
materialNr = 1
normalVertexNr = 46 31 49
positionVertexNr = 37 52 34
smoothingGroup = 9
}
88
{
materialNr = 1
normalVertexNr = 49 31 43
positionVertexNr = 34 52 40
smoothingGroup = 259
}
89
{
materialNr = 1
normalVertexNr = 41 24 40
positionVertexNr = 42 59 43
smoothingGroup = 6
}
90
{
materialNr = 1
normalVertexNr = 24 25 40
positionVertexNr = 59 58 43
smoothingGroup = 82
}
91
{
materialNr = 1
normalVertexNr = 45 42 39
positionVertexNr = 38 41 44
smoothingGroup = 8194
}
92
{
materialNr = 1
normalVertexNr = 37 45 39
positionVertexNr = 46 38 44
smoothingGroup = 7
}
93
{
materialNr = 1
normalVertexNr = 25 37 39
positionVertexNr = 58 46 44
smoothingGroup = 265
}
94
{
materialNr = 1
normalVertexNr = 36 38 44
positionVertexNr = 47 45 39
smoothingGroup = 1089
}
95
{
materialNr = 1
normalVertexNr = 36 24 38
positionVertexNr = 47 59 45
smoothingGroup = 41
}
96
{
materialNr = 0
normalVertexNr = 21 18 15
positionVertexNr = 60 61 62
smoothingGroup = 4
}
97
{
materialNr = 0
normalVertexNr = 18 12 15
positionVertexNr = 61 63 62
smoothingGroup = 4
}
98
{
materialNr = 0
normalVertexNr = 16 13 9
positionVertexNr = 62 63 64
smoothingGroup = 2
}
99
{
materialNr = 0
normalVertexNr = 13 6 9
positionVertexNr = 63 65 64
smoothingGroup = 2
}
100
{
materialNr = 0
normalVertexNr = 10 7 3
positionVertexNr = 64 65 66
smoothingGroup = 4
}
101
{
materialNr = 0
normalVertexNr = 7 0 3
positionVertexNr = 65 67 66
smoothingGroup = 4
}
102
{
materialNr = 0
normalVertexNr = 4 1 22
positionVertexNr = 66 67 60
smoothingGroup = 2
}
103
{
materialNr = 0
normalVertexNr = 1 19 22
positionVertexNr = 67 61 60
smoothingGroup = 2
}
104
{
materialNr = 0
normalVertexNr = 20 2 14
positionVertexNr = 61 67 63
smoothingGroup = 1
}
105
{
materialNr = 0
normalVertexNr = 2 8 14
positionVertexNr = 67 65 63
smoothingGroup = 1
}
106
{
materialNr = 0
normalVertexNr = 5 23 11
positionVertexNr = 66 60 64
smoothingGroup = 1
}
107
{
materialNr = 0
normalVertexNr = 23 17 11
positionVertexNr = 60 62 64
smoothingGroup = 1
}
}
}